FLOYD COUNTY SCHOOLS’ CURRICULUM RESOURCES
"Building a Better Future for Every Child - Every Day!"

Summer 2013

Subject Content: \qquad Math

Grade \qquad
Indicates the Curriculum Map

New	
Weeks 1-3	Weeks 4-6
UNIT TOPIC	Unit/Topic
OPERATIONS AND ALGEBRAIC THINKING	NUMBER AND OPERATIONS IN BASE TEN:

Common Core Standards

- 2.OA.1: Use addition and subtraction within 100 to solve one-and two-step word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.
- 2.OA.2: Fluently add and subtract within 20 using mental strategies. By the end of Grade 2, know from memory all

Common Core Standards

- .NBT.1: Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones; e.g. 706 equals 7 hundreds, 0 tens, and 6 ones.
A. 100 can be thought of as a bundle of ten tens called a hundred.
B. The numbers $100,200,300,400,500,600,700,800$, 900 refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones)

sums of two one digit-numbers.

- 2.NBT.5: Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction.
- 2.NBT.9: Explain why addition and subtraction strategies work, using place value and the properties of operation.
- 2.NBT.3: Read and write numbers to 1000 using base ten numerals, number names, and expanded form.
- 2.NBT.4: Compare two three-digit numbers based on meanings of the hundreds, tens, and ones digits, using $>,=$, and < symbols to record the results of comparisons.
- 2.NBT.5: Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction
- 2.NBT.2: Count within 1000 ; skip-count by 5 's, 10 's, and 100's.

OPERATIONS AND ALGEBRAIC THINKING:

- 2.OA.3: Determine whether a group of objects (up to 20) has an odd or even number of members, e.g., by pairing objects or counting them by 2's; write an equation to express an even number as a sum of two equal addends.
- *2.MD.10: Draw a picture graph and a bar graph (with singleunit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph.

CURRICULUM			CURRICULUM		
Week 1	Week 2	Week 3	Week 4	Week 5	Week 6
\| Identify Sub-Topics Understanding Addition and Subtraction	Identify Sub-Topics Addition Strategies	Identify Sub-Topics Subtraction Strategies	Identify Sub-Topics Understand Place Value	Identify Sub-Topics Understand Place Value GREATER THAN LESS THAN EQUAL SKIP COUNT	Identify Sub-Topics Understand Place Value ODD/EVEN
ICAN STATEMENTS: - I can add and subtract within 100 to solve one step -two step word problems. - Identify the unknown in an addition and subtraction word problem	I CAN STATEMENTS: - I can fluently add and subtract within 20 in my head. - I can recall basic math facts from memory. - I can use different	I CAN STATEMENTS: - I can fluently add and subtract within 100. - I can explain why addition and subtraction strategies work.	ICAN STATEMENTS: - Read and write number words 0-99 - Group objects into tens and ones to show two digit numbers	I CAN STATEMENTS: - I can compare three-digit numbers using symbols <, =, > - Skip count by 5's, 10's, and 100's within 1000.	I CAN STATEMENTS: - I can tell whether a group of objects is odd or even - I can write an equation which shows adding the

	strategies to solve math equations				same two numbers will result in an even number. - I can solve problems using a bar graph or picture graph.
 Critical Vocabulary Part subtract Whole difference Add subtraction sentence Sum minus Plus separate Equals more Addition fewer Sentence related join 	Critical Vocabulary Doubles Near doubles Addend Number sentence	Critical Vocabulary Doubles Near doubles Addend Number sentence	Critical Vocabulary Ones pattern Tens skip counting Digits even Number word odd Greater than Less than Equal to Before After Between Least greatest	Critical Vocabulary Ones pattern Tens skip counting Digits even Number word odd Greater than Less than Equal to Before After Between Least greatest	Critical Vocabulary Ones pattern Tens skip counting digits Even odd Number word Greater than Less than Equal to Before After Between Least greatest
Strategies/Activities - Develop a story	Strategies/Activities - Develop a story problem that	Suggested Strategies Activities - Use	Strategies/Activitie S	Strategies/Activities	Strategies/Activiti es

problem that illustrates a given addition or subtraction number sentence. - Use manipulatives to demonstrate addition and subtraction sentences written symbolically. - Write numbers and translate word clues to number sentences and vice versa. - Use various models such as number lines, pictures, and base-ten blocks to illustrate addition and subtraction. - Find unknowns in number sentences and problems involving addition, subtraction and multiplication.	illustrates a given addition or subtraction number sentence. - Use manipulatives to demonstrate addition and subtraction sentences written symbolically. - Write numbers and translate word clues to number sentences and vice versa. - Use various models such as number lines, pictures, and base-ten blocks to illustrate addition and subtraction. Develop fluency at recalling basic addition facts and related subtraction	manipulatives to demonstrate addition and subtraction sentences written symbolical - Use ageappropriate books, stories, and videos to convey ideas of mathematics. - Develop fluency at recalling basic addition facts and related subtraction facts. - Solve addition and subtraction problems in context using various representation s. - Promethean Flipcharts	- Use connecting cubes and form groups of tens - Use number tiles - Use place value mats - Brain pop on computer - Greater than less than crocodile activities with computer games	- Provide students with 3 Numbers containing 2 digits. Have students "line the numbers" according to place value. Explain' to the students that we will look for the "change" (the position where the digits are different. Once located, this process can be repeated as students list the numbers from greatest to least, or least to greatest. This will also reveal <, >, and =. - Skip count by 5's, 10's, and 100's - Given a set of three digit numbers students will fill in the missing numbers.	- Use connectin g cubes to determine if a number is Odd or even. - Sing Bingo song - Computer games

	facts. - Solve addition and subtraction problems in context using various representation s. - Understand and use the commutative and associative properties of addition and multiplication.				
Formative Classroom discussion, exit slips, questioning Summative Multiple choice end of topic exam, open response	Formative Classroom discussion, exit slips, questioning Summative Multiple choice end of topic exam, open response	Formative Classroom discussion, exit slips, questioning Summative Multiple choice end of topic exam, open response	Formative Classroom discussion, exit slips, questioning Summative Multiple choice end of topic exam, open response	Formative Classroom discussion, exit slips, questioning Summative Multiple choice end of topic exam, open response	Formative Classroom discussion, exit slips, questioning Summative Multiple choice end of topic exam open response

Common (PLC Teams will design the common assessments, i.e., grade level, and/or depts..)	Common (PLC Teams will design the common assessments, i.e., grade level, and/or depts.)	Common (PLC Teams will design the common assessments, i.e., grade level, and/or depts.)	Common (PLC Teams will design the common assessments, i.e., grade level, and/or depts.)	Common (PLC Teams will design the common assessments, i.e., grade level, and/or depts.)	Common (PLC Teams will design the common assessments, i.e. grade level, and/o depts.)
Resources Needed - EnVision Math Series - TOPIC 1 - www.educationcit y.com - www.studyisland. com - www.coolmath.co m - www.primarygame s.com - www.unitedstream ing.com	Resources Needed - EnVision Math Series - TOPIC 2 - www.educationcit y.com - www.studyisland. com - www.coolmath.co m - www.primarygame s.com - www.unitedstream ing.com	Resources Needed - EnVision Math Series - TOPIC 3 - www.educationcit y.com - www.studyisland. com - www.coolmath.co m - www.primarygam es.com - www.unitedstrea ming.com	Resources Needed - EnVision Math Series - TOPIC 4 - www.education city.com - www.studyisla nd.com - www.coolmath. com - www.primaryga mes.com - www.unitedstre aming.com Games: Create a House Number (exemplary lesson) Composing	Resources Needed - EnVision Math Series - TOPIC 4 - www.educationcity .com - www.studyisland.c om - www.coolmath.co m - www.primarygame s.com - www.unitedstreami ng.com Games: Alligator Lunch Compare It! Comparing Amounts Comparing Numbers Comparing 3 Digit	Resources Needed - EnVision Math Series - TOPIC 4 - www.educatio ncity.com - www.studyisle nd.com - www.coolmath .com - www.primaryg ames.com - www.unitedstı eaming.com Games: Even Odd Pattern Block Grab Even Odd Grab Even Odd Song

			Numbers Lesson Base Ten Cards DR Expander Cards DR Expanded Form Hangman Expanded Form of Numbers Hundreds Charts DR Number Word Concentration Number Writing Barrier Game Place Value Charts DR Place Value Place ValuGame Representing Numbers in Four Ways Roll 3 Digits Ten Frame Cards DR	Numbers One False Move Count by Fives Count by Fives Gameboard Count by Tens Count by Tens Gameboard Counting Collections Counting Game Counting by Twos - Fish Displaying Number Patterns	Read-Alouds focusing on odd and even numbers Color Odd and Even Numbers Dragon Eggs Odd Even Numbeı Game Odd or even game - many levels Fair Shares

eeks 7-9	Weeks 10-12
Unit/Topic	Unit/Topic
MEASUREMENT AND DATA:	• Number Operations in Base Ten

2.MD.8: Solve word problems involving dollar bills, quarters, dimes, nickels, and pennies, using symbols appropriately. *Example: If you have 2 dimes and 3 pennies, how many cents do you have?
2.NBT.5: ** Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction.
2.0A. 1 Use addition and subtraction within 100 to solve one- and two-step word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns ir all positions e.g. by using drawings and equations with a symbol for the unknown number to represent the problem.
2.NBT.5: ** Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationshir between addition and subtraction.
2.NBT.8: Mentally add 10 and 100 to a given number 100-900, and mentally subtract 10 or 100 from a given number 100-900.
2.NBT.9: Explain why Addition and subtraction strategies work, using place value and the properties of operations

CURRICULUM

				CURRICULUM		
Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	
Identify	Identify	Identify	Identify	Identify	Identify	
Sub-Topics	Sub Topics	Sub-Topics	Sub-Topics	Sub-Topics	Sub-Topics	

Solving problems using money	Solving Problems Using money	Add and subtract fluently within 100	Mental Addition	Mental Addition	Mental Subtraction
ICAN STATEMENTS: - I can solve word problems involving money. - I can use the \$ and ϕ symbols.	I - I can solve word problems involving money. - I can use the \$ and ϕ symbols	I CAN STATEMENTS: - I can fluently add and subtract within 100.	I CAN STATEMENTS: - Add and subtract within 100 using concrete models or drawings and strategies based on place value. - Add and subtract within 100 using concrete models or drawings and strategies based on properties of operations. - Add and subtract within 100 using concrete models or drawings and strategies based on the relationship between addition and subtraction.	I CAN STATEMENTS: - Add and subtract within 100 using concrete models or drawings and strategies based on place value. - Add and subtract within 100 using concrete models or drawings and strategies based on properties of operations. - Add and subtract within 100 using concrete models or drawings and strategies based on the relationship between addition and subtraction.	- Add and subtrac within 100 using concrete models or drawings and strategies based on properties of operations. - Add and subtrac within 100 using concrete models or drawings and strategies based on the relationship between additior and subtraction.
Critical Vocabulary penny dollar coin	Critical Vocabulary penny dollar coin	Critical Vocabulary Mental math	Critical Vocabulary Mental math	Critical Vocabulary Mental math	Critical Vocabulary Add subtract

 nickel tally mark dime decimal point quarter mental math cents ten digit coins next ten dollar half-dollar greatest value least value	nickel tally mark dime \quad decimal point quarter cents coins dollar half-dollar greatest value least value	Ten digit Next ten	Digit Place Value Vertical Horizontal Tens digit Next ten	Digit Place Value Vertical Horizontal Tens digit Next ten	word problem adding to taking from putting together taking apart compare strategy place value explain number line diagram
Suggested Strategies/Activities - Play store - Use half egg carton and handful of coins and construction paper. Toss paper wads made from different colors of construction	Suggested Strategies/Activities - Computer games - Money store - Demonstrate different ways to make money amounts by using different coins - Mark your	Suggested Strategies/Activities - Money bingo - Organized list ways to show money amounts - Each student write a money problem and let partner solve it - Computer	Suggested Strategies/Activities - Students should have the opportunity to solve problems and then explain why their strategies work. - Use place value cubes - Computer activities	Suggested Strategies/Activities - Use add to check strategies - Students should have ample experiences working with the concept that when you add or subtract multiples of	Suggested Strategies/Activities - Counting Back: - Counting Up: Students start with a number and count backwards. If the question is $5-2$, students count 5, 4, 3. Note: This strategy is only useful for subtractins 1,2 , or 3 . Students start with a

paper into egg carton cups,which will have a coin inside add money values and total scores to se who is the winner - Make a coin book - Computer games - A lot of hands on activities	coins and count money by fives: Quarter has five marks Dime two marks Nickel one mark Penny no marks over it just draw a line through as counting...	games - Teacher made games	- Hundred chart	10 or 100 that you are only changing the tens place (multiples of ten) or the digit in the hundreds place (multiples of 100). Place value cubes/rods	number being subtracted and count up to the number from which it is being subtracted. For example, for the question $9-7$, students can count 8 , 9. - Using Part, Part, Whole: Given: Part + Part = Whole Therefore: Whole - Part = Part
Balanced Assessment: Formative Classroom discussion, exit	Balanced Assessment: Formative Classroom discussion, exit	Balanced Assessment: Formative Classroom	Balanced Assessment: Formative Classroom discussion, exit slips, questioning	Balanced Assessment: Formative Classroom discussion, exit	Balanced Assessment: Formative Classroom discussion, exit

mes.com - www.unitedstrea ming.com	mes.com - www.unitedstrea ming.com	mes.com - www.unitedstrea ming.com	s.com - www.unitedstreami ng.com	mes.com - www.unitedstrea ming.com	mes.com - www.unitedstrea ming.com

Weeks 13-15	Weeks 16-18
Unit/Topic Operations and Algebraic Thinking	Unit/Topic
Common Core Standards	Cperations and Algebraic Thinking

2.NBT.8: Mentally add 10 and 100 to a given number 100- 900, and mentally subtract 10 or 100 from a given number 100-900. 2.NBT.9: Explain why Addition and subtraction strategies work, using place value and the properties of operations

	digit Numbers *Regrouping	numbers *Regrouping	numbers*regrouping	numbers **regrouping	Subtraction
I CAN STATEMENTS: Use mental subtraction to subtract within 100	I CAN STATEMENTS: Use efficient procedures, and understand why they work, to solve problems involving the addition and subtraction of two- and threedigit numbers (including those that require regrouping)	I CAN STATEMENTS: Use efficient procedures, and understand why they work, to solve problems involving the addition and subtraction of twoand three-digit numbers (including those that require regrouping)	I CAN STATEMENTS: Use efficient procedures, and understand why they work, to solve problems involving the addition and subtraction of twoand three-digit numbers (including those that require regrouping)	I CAN STATEMENTS: Use efficient procedures, and understand why they work, to solve problems involving the addition and subtraction of twoand three-digit numbers (including those that require regrouping)	I CAN STATEMENTS: Add and subtract fluently within 100
Critical Vocabulary Add subtract word problem adding to taking from putting together taking apart compare strategy place value explain	Critical Vocabulary Addend Sum Difference Inverse Operations Regroup	Critical Vocabulary Addend Sum Difference Inverse Operations	Critical Vocabulary Addend Sum Difference Inverse Operations	Critical Vocabulary Addend Sum Difference Inverse operations	Critical Vocabulary Estimate Addend Sum Difference Inverse operations

| numbe line | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| diagram | | | | | (

$\left.\begin{array}{|l|l|l|l|l|l}\hline & \begin{array}{l}\text { number's over } \\ \text { q, you } \\ \text { regroup. Clap } \\ \text { Clap }\end{array} & & & \text { top, } \\ \text { Take a ten. }\end{array}\right]$

Unit/Topic NUMBER AND OPERATIONS IN BASE TEN	Unit/Topic
	MEASUREMENT AND DATA

ICAN STATEMENTS: Add and subtract fluently within 100	ICAN STATEMENTS: Recognize and draw shapes having special attributes	ICAN STATEMENTS: - Identify a translation, reflection, or rotation of a shape - Partition a rectangle into rows and columns of same sized squares to find the total number of them.	I CAN STATEMENTS: - I can divide circles and rectangles into equal parts. - I can describe equal parts as part of a whole. - I can recognize equal shares of identical shapes do not have to be the same shape.	I CAN STATEMENTS: - I can divide circles and rectangles into equal parts. - I can describe equal parts as part of a whole. - I can recognize equal shares of identical shapes do not have to be the same	I CAN STATEMENTS: - I can select appropriate tools for measuring length. - I can measure the length of an object. - I can measure the length of objects using different length units. - I can describe the relationship of different length units. - I can estimate lengths.
Critical Vocabulary Estimate Addend Sum Difference Inverse operations	Critical Vocabulary Sphere Pyramid Cylinder Cone Prism Solid figure Flat surface Edge	Critical Vocabulary Translation Relection Rotation Perimeter Area	Critical Vocabulary Equal Unequal Halves Thirds Fourths Fraction Set	Critical Vocabulary Equal Unequal Halves Thirds Fourths Fraction Set	\quad Critical Vocabulary Attribute Length Unit Height Inch Yard Foot Centimeter Perimeter

$\left.\begin{array}{|c|c|c|c|l|l|}\hline & \text { Vertices } & & & \begin{array}{l}\text { Meter } \\ \text { Area }\end{array} \\ \text { Square units }\end{array}\right]$

assessments, i.e., grade level, and/or 25epts..)					
Resources Needed - EnVision Math Series - TOPIC 10 - www.educatio ncity.com - www.studyisl and.com - www.coolmat h.com - www.primary games.com - www.unitedst reaming.com	Resources Needed - EnVision Math Series - TOPIC 11 - www.educationcity. com - www.studyisland.c om - www.coolmath.com - www.primarygame s.com - www.unitedstreami ng.com	Resources Needed - EnVision Math Series - TOPIC 11 - www.educationcity. com - www.studyisland.c om - www.coolmath.com - www.primarygame s.com - www.unitedstreami ng.com	Resources Needed - EnVision Math Series - TOPIC 12 - www.educationcity. com - www.studyisland.c om - www.coolmath.com - www.primarygame s.com - www.unitedstreami ng.com	Resources Needed - EnVision Math Series - TOPIC 12 - www.educationcity.c om - www.studyisland.co m - www.coolmath.com - www.primarygames. com - www.unitedstreamin g.com	Resources Needed - EnVision Math Series - TOPIC 13 - www.educationcity.c om - www.studyisland.co m - www.coolmath.com - www.primarygames.c om - www.unitedstreaming .com

Weeks 25-27	Weeks 28-30
Unit/Topic MEASUREMENT AND DATA	Unit/Topic
Common Core Standards MD.1: Measure the length of an object by selecting and using appropriate tools such as rulers, yardsticks, meter sticks, and measuring tapes. MD.2: Measure the length of an object twice, using length units of different lengths for the two measurements; Describe how the two measurements relate to the size of the unit chosen. MD.3: Estimate lengths using units of inches, feet,	Time: MD.7: Tell and write time from an analog and digital clock to the nearest five minutes, using a.m. and p.m. 2.0A. 1 Use addition and subtraction within 100 to solve one- and two-step word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions e.g. by using drawings and equations with a symbol for the unknown number to represent the problem Graphs: 2.MD.10: Draw a picture graph and a bar graph (with single unit scale) to represent

centimeters, and meters.	a data set with up to four categories. Solve simple put together, take apart, and compare problems using information presented in a bar graph.
MD.4: Measure to determine how much longer one object is than another, expressing the length difference in terms of a standard length unit.	2.MD.9: Generate measurement data by measuring lengths of several objects to the nearest whole unit, or by making repeated measurements of the same object. Show the measurements by making a line plot, where the horizontal scale is marked off in whole number units.
MD.5: Use addition and subtraction within 100 to solve word problems involving lengths that are given in the same units, e.g., by using drawings (such as drawings of rulers) and equations with a symbol for the unknown number to represent the problem.	
MD.6: Represent whole numbers as lengths from 0 on a number line diagram with equally spaced points corresponding to the numbers $0,1,2$, and represent whole number sums and differences within 100 on a number line diagram.	

| another | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

ruler, yard stick or metric stick.	paper. Write a specific number of square units on the board and have students see how many different ways they can show this on the graph paper. This activity can also be done with perimeter	digital clock face. Students can also draw the appropriate analog time face to match the digital time shown.	time, use the tune of "The Wheels on the Bus go Round and Round." The short hand say's it's number first, Number first, number first. The short hand say's it's number first When we're telling time. The long hand is tall and counts by 5 ; Counts by 5, counts by 5 . The long hand is tall and counts by 5 ; When we're telling time. Theteachersworkshop .com	project by drawing pictures and gluing on the graph. - Favorite season, favorite food, favorite color, favorite fruit...etc - Convert to bar graph	floor mat for graphing or make your own using a white shower curtain liner and making a grid on it with painter's tape After you complete each graph let the students talk about their observations and then ask questions about the graph. Some questions to consider are: - Which column has the most? the least? - Are any columns the same? - How many \qquad ? - Are their more \qquad or more \qquad ? - How many more \qquad are there than \qquad ? - How many fewer \qquad are their than \qquad ? - How many are there altogethes

| | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |

Weeks 31-33	Weeks 34-36
Unit/Topic NUMBER AND OPERATIONS IN BASE TEN	Unit/Topic NUMBERS AND OPERATIONS IIN BASE TEN
Common Core Standards - 2.NBT.1: Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones; e.g., 706 equals 7 hundreds, 0 tens, and 6 ones. 100 can be thought of as a bundle of ten tens called a hundred. The numbers 100, 200, 300, 400, 500, 600, 700, 800, 900 refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones) - 2.NBT.2: Count within 1000; skip count by 5, 10's, and 100's - 2.NBT.3: Read and write numbers to 1000 using base ten numerals, number names, and expanded form. - 2.NBT.4: Compare two three digit	Common Core Standards - 2.NBT. 7: Add and subtract within 1000, using concrete models or drawings and strategies based on place value, properties of operations, and /or the relationship between addition and subtraction; relate the strategy to a written method. Understand that in adding or subtracting three digit numbers, one adds or subtracts hundreds and hundreds, tens and tens, ones and ones; and sometimes it is necessary to compose or decompose tens or hundreds. - 2.NBT.8: Mentally add 10 and 100 to a given number 100-900, and mentally subtract 10 or 100 from a given number 100-900. - 2.NBT.9: Explain why addition and subtraction strategies work, using place value and the properties of operations - 2.0A.4: Use addition to find the total number of objects arranged in rectangular arrays with up to 5 columns; write an equation to express the total as a sum of equal addends.

```
numbers based on meanings of the
hundreds, tens, and ones digits,
```

using >, =, < symbols to record the
results of comparisons.

- 2.NBT.7: Add and subtract within 1000 , using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method. Understand that in adding or subtracting three digit numbers, one adds or subtracts hundreds and hundreds, tens and tens, ones and ones; and sometimes it is necessary to compose or decompose tens or hundreds.
- 2.NBT.8: Mentally add 10 and 100 to a given number 100-900, and mentally subtract 10 or 100 from a given number 100-900.
- 2.NBT.9: Explain why addition and subtraction strategies work, using place value and the properties of operations.

and play bingo ..call out number .. may put chart into a clear pocket. - Also may do math problems using chart	Students stand in a circle to count in turn by ones, but they say "buzz" instead of the specified numbers. For example, a correct sequence would be "1, 2, 3, 4, buzz, 6, 7, 8, 9, buzz, 11" If a student forgets to buzz, they are out of the game. Vary rules as required (eg. give several chances before they are out). Using the Hundreds Grid for counting Mr. Great (pacman) Tell students that you have a very special visitor. Introduce them to Mr. Great. Tell them that Mr. Great likes to eat numbers. His favorite	you do a subtraction problem If the BIG is on the BOTTOM, BORROW 10 Once you take from the 10 's, add to the 1 's (Sing this line 2 times) Once you add ten to the 1 's, then your tens are lowered one Do subtraction in each column, and you're done Flashcards, math races, timed drills, math bingo	Verse 1 These are the key words that tell you what to doListen to us and you'll add too! -How many in all? -What is the total? -Put them altogether? -lt'll give you the sum too. Tweetle diddly dee, tweedlely diddly dee (sing 3 times) Verse 2 These are the key words that tell you what to doListen to us and you will subtract too. -What is the difference? -How many are left? -How many fewer? Which is less? Tweetle diddly dee, tweedlely diddly dee (sing 3 times) Computer games,	conne cting cubes or object s to place in an array to add equal, adden ds. Relate this to a multip licatio probl em. For exam ple: 4 colum ns with 4 In each row is 4+4+4 +4=16 or	use stra ws to mak e an array and write the addit ion probl em and the multi plica tion probl em e

	numbers are the "bigger" or "greater" numbers. Mr. Great is a pac man symbol Write two simple numbers on the board -- for example, the numbers 4 and 9-- and ask students which number they think Mr. Great wants to eat. The class will tell you that he wants to eat the greater numbr, the number 9. Take Mr. Great and stick on him on the board between the numbers so that his mouth (the opening of the > sign) is about to "devour" the greater number		playing cards to make numbers to add or subtract.. calculator races.	

discussion, exit slips questioning	discussion, exit slips, questioning		discussion, exit slips, questioning	slips, questioning	
Summative Multiple choice end of topic exam, open response	Summative Multiple choice end of topic exam, open response	Summative Multiple choice end of topic exam, open response	Summative Multiple choice end of topic exam, open response	Summative Multiple choice end of topic exam, open response	Summative Multiple choice end of topic exam, open response
Common (PLC Teams will design the common assessments, i.e., grade level, and/or 42epts..)	Common (PLC Teams will design the common assessments, i.e., grade level, and/or 42epts..)	Common (PLC Teams will design the common assessments, i.e., grade level, and/or 42epts..)	Common (PLC Teams will design the common assessments, i.e., grade level, and/or 42epts..)	Common (PLC Teams will design the common assessments, i.e., grade level, and/or depts.)	Common (PLC Teams will design the common assessments, i.e., grade level, and/or depts.)
Resources Needed - EnVision Math Series - TOPIC 17 - www.educationci	Resources Needed - EnVision Math Series - TOPIC 17 - www.educationci	Resources Needed - EnVision Math Series - TOPIC 18 - www.educationcity	Resources Needed - EnVision Math Series TOPIC 18 - www.educationci ty.com - www.studyisland.	Resources Needed - EnVision Math Series TOPIC 19 - www.educationci ty.com	Resources Needed EnVision Math Series TOPIC 19 - www.educationc

ty.com - www.studyisland .com - www.coolmath.c om - www.primarygam es.com - www.unitedstrea ming.com	ty.com - www.studyisland .com - www.coolmath.c om - www.primaryga mes.com - www.unitedstrea ming.com	.com - www.studyisland.c om - www.coolmath.co m - www.primarygame s.com - www.unitedstreami ng.com	com - www.coolmath.c om - www.primarygam es.com - www.unitedstrea ming.com	- www.studyisland. com - www.coolmath.c om - www.primarygam es.com - www.unitedstrea ming.com	ity.com - www.studyislan d.com - www.coolmath.c om - www.primaryga mes.com - www.unitedstrea ming.com

